
Automating
application-driven
container elasticity
For platform and DevOps engineers
looking to operationalize speed to market
while assuring application performance

2 Automating application-driven container elasticity

Contents

03
Executive summary

03
A promise of speed, agility,
elasticity and scale

05
Platform and infrastructure

07
An app-driven approach

08
Accelerating digital
transformation during
a pandemic

3 Automating application-driven container elasticity

Executive summary
Your competitive advantage depends on how quickly ideas
become business transactions, and how well they perform
for your customers. Technology is the enabler.

Containers offer the speed, agility, elasticity and scale that’s
fundamentally changing the way we build, deploy and run
these applications. They usher in a world where applications
can truly run anywhere; updates and new capabilities can
deploy into production several times a day, and dynamic
fluctuating workload demand can be managed with elastic
infrastructure supply—wherever, whenever. Kubernetes is
a platform that can enable organizations to be agile and
elastic, but it doesn’t manage trade-offs on how to assure
performance while being efficient.

For all the simplicity and agility containerization provides,
the orchestration platform only provides a way to manage
the lifecycle of these services—deploying and maintaining
your services in the way you describe.

Container platforms don’t natively assure services meet SLOs
and can’t dynamically manage resources
Threshold-based policies don’t solve continuous performance;
this approach has never worked, and for the speed of change
in container platforms, uncorrelated triggered autoscaling can
end up actually causing problems. Elastic infrastructure is key
to delivering performance, but needs automated analytics that
continuously manages demand, supply and constraints to meet
desired service-level objectives (SLOs).

This white paper discusses key concepts to consider for
container platform adoption as the way to run your business,
and how to protect that investment with automation that
assures performance while minimizing cost and remaining

compliant. It outlines why you need top-down-driven analytics
for a self-managing Kubernetes platform to run your services.
Building for multicloud scale early on in your journey gives
your IT organization the operational “muscle memory” that
will fundamentally transform how—and when—you deliver on
more innovation.

A promise of speed, agility,
elasticity and scale
Kubernetes enables elasticity; it doesn’t automatically ensure
you meet and assure application SLOs.

The success of adopting containerization depends on how well
you give developers the agility they need, the elasticity required
to adapt at scale to continuously fluctuating demands and the
assurance the application will perform at the required speed.

Adopting a cloud-native approach and decomposing your
applications into distinct sets of services can drive more
agile application development and deployment. Containers
provide the packaging that makes your services portable
and scalable. Kubernetes provides a framework and control
points to run your digital applications and services. But to
deliver a performant, enterprise-scale platform for your
business, you still need to add capabilities to unleash the
elasticity enabled by the platform to meet and assure
application SLOs.

Deploy faster with CICD and production feedback
The right continuous integration continuous deployment (CICD)
methodology, based on automation, is key to achieving faster
time to market. In the Google Cloud State of DevOps 2021
report,1 respondents cited significant improvements because
of implementing CICD:

Deployment frequency Weekly–monthly Hourly–daily

Change lead time More than six months Less than one hour

Change failure rate 16%–30% 0%–15%

4 Automating application-driven container elasticity

With speed comes the need to have a way to manage constant
change in production and have a feedback loop regarding how
your services are performing, and how to predict what’s needed
from the infrastructure. The goal is to have a way to define
your SLOs, and have the platform provide feedback on how to
configure your containers and infrastructure to reduce the risk
of performance issues.

 – Who decides how resources should be allocated to services?
How do they decide it? Stress testing and benchmarking
against set SLOs and so on.

 – How do you measure performance? Is there a feedback loop
in your CICD pipeline to ensure containers and pods are con-
figured correctly?

 – How do you ensure that there’s always enough capacity for
new deployments?

Find your
IBM Turbonomic
answers

Options Limitations IBM Turbonomic answers

Manually analyze
container and pod
utilization data to determine
resource specifications.

 – Data collection set up
 – Labor for analysis

 – Top-down,
application-driven
analytics that
determines how to
size your containers

 – Feedback into CICD
 – Opportunities to
reduce requests
when not required

Manually analyze resource
data from all points in
the stack to determine
production capacity.

 – Labor to collect data
from multiple sources

 – Labor for analysis

Utilization-based analysis
to identify resource needs
throughout the full stack

AppDev

Specify Code Version
control

Build Test
and
verify

Package Deploy and manage onto
Caas (Content as a Service)
and PaaS (Platform as
a Service)

Production concerns:
Maintain SLOs, plan
for growth

CICD DevOps

Competitive advantage here Automation keeps cost down and increases throughput

Figure 1. Process for application agility.

5 Automating application-driven container elasticity

Platform and infrastructure
Why you need app-driven, full stack management
Regardless of your choice of container platform—or
underlying infrastructure—private cloud, public cloud,
hybrid cloud, multicloud or even bare metal—the
operational challenges of your platform as a service
(PaaS) are the same:

 – How do you determine whether there’s enough capacity
to accommodate current and scaling demand?

 – How do you decide when to spin up more application nodes?
 – How do you decide when to suspend?

 – How do you handle peak demand?
 – How do you utilize public cloud resources for bursting?
 – How do you assure high availability (HA) and resiliency
throughout the stack?

 – How do you enforce business constraints?

The elasticity enabled by container platforms provides the
opportunity to provision for the sum of the average demands
of your application instead of the sum of the peak demands of
your applications. To take advantage of this ability, delivering
a platform that continuously scales up and down as demand
fluctuates requires software that continuously makes resourcing
decisions to ensure that applications get the compute, storage
and network they need when they need it.

Find your
IBM Turbonomic
answers

Options Limitations IBM Turbonomic answers

Run on service providers
that provide auto-scaling
groups, such as affiliated
service groups (ASGs),
availability sets and so on.

 – Threshold-based policies
 – Can’t scale a specific
node: All nodes must be
the same constraints,
node labels and so on

 – Top-down
application-driven SLOs

 – Continuously adjusts
infrastructure resources to
meet application demand

 – Continuously scales up,
down, vertically and
horizontally, the right
containers, pods
and nodes

 – Continuously places pods
in the proper nodes

Analyze resource data
from all points in the
stack to determine
production capacity.

.

 – Labor to collect data
from multiple sources

 – Labor for analysis

 – Utilization-based analysis
to identify resource needs
throughout the full stack

 – Continuously scales
up, down, vertically
and horizontally, the
right containers, pods
and nodes

 – Continuously
triggers actions to
prevent bottlenecks

6 Automating application-driven container elasticity

Operating for SLOs at scale
The purpose of the container platform is to run your applications
at the desired level of service for your business. You need to
continuously assure performance as the number of applications
grows. Typically, we see customers take over 12 months for
the first 1 – 3 applications. For subsequent applications, with
the benefit of learned skills and best practices, it can take an
additional 6 – 12 months. When lines of business learn what’s
possible, the scale of the number of individual services to
manage is beyond management by humans. Even if you have
built stateless services, taking advantage of the ephemeral
nature of containers, what’s your tolerance for degradation of
performance for your end-user’s experience? What can you do
to manage not only demand, but the increasing rate of change?
The answer lies in automation, through actions that are based
on an analysis of the trade-offs of how many instances of your
service are needed to assure SLO, the configuration of the
size and placement of your workload and making compliant
resources available from the infrastructure.

Thresholds don’t solve the problem
A container platform will assure you have a minimum number
of services available; if one crashes it will attempt to spin it up
again. But if you want to assure a good user experience, you
want the system to respond before performance degradation
and a crash occurs. You can set native horizontal autoscaling
to meet demand, but you need to decide what metrics best
express the resources needed, configure thresholds and upper
and lower limits, test and extrapolate if it will function under
production demand, and then repeat for every service deployed.

Imagine if you had over 100 services for a single application?
Each of these policies have no correlation with each other.
How do you assure that adding more pods of a service isn’t
introducing congestion in another area? Are you cloning a pod
that was poorly configured, and does it need vertical scaling
first? How do you manage node congestion, account for noisy
neighbors and identify unused allocated resources that could
be freed up to meet this demand?

Moreover, configuring your containers, pods, and
horizontal pod autoscaler (HPA) or cluster autoscaling
policies isn’t a one-and-done exercise. Best-guess efforts
must be continuously monitored and redefined if they’re
not. What could your teams do with the time saved if they
didn’t have to manually set and reset these thresholds?

The importance of getting these configurations right
has direct implications for the successful rollout of your
digital transformation strategy. A few bad deployments can
significantly slow the adoption of the platforms and systems
you’re building. And too much time and labor spent manually
configuring these control points can significantly encumber
your organization’s ability to become platform-first. Can your
business afford that delay? What’s needed is a control system
that can manage trade-offs across all resources, and define
container vertical scaling limits and requests, number of pods
needed, and placement decisions to redistribute pods and
manage cluster resources using a single analytics engine.

How do I assure enough node
capacity to support an individual
HPA policy? What if there are
multiple HPA policies?

Manual policies that can’t
be managed at scale

What are the KPIs
(Key Performance Indicators)
and data source? Do I need
customer metrics?

Repeat for
next service

What’s the best upper
and lower pod limit?

What’s the best KPI
threshold to set?

What’s my SLO?

Figure 2. Manual policies that can’t be managed at scale

7 Automating application-driven container elasticity

Find your
IBM Turbonomic
answers

Options Limitations IBM Turbonomic answers

HPA threshold-based
policy when to trigger
scaling pods in and out

 – Configures per service
 – Based on the average of
all pods for the service

 – Manually defined KPIs
and thresholds, and upper
and lower pod limits

 – Top-down
application-driven SLOs

 – Uses response-time data
to drive horizontal scaling
of services to meet SLOs

 – Continuously scales up
and down, vertically and
horizontally, the right
containers, pods
and nodes

 – Continuously places pods
in the proper nodes

 – Continuously adjusts
infrastructure resources to
meet application demand

Vertical pod autoscaler (VPA)
threshold-based policy to
vertically scale containers

Lets pods crash to redeploy
them onto a better node

Prometheus observability
solutions collect and
consolidate data

 – Must define for
every service

 – Beta project: use at your
own risk

 – Doesn’t access node
capacity to take action

Poor user experience for
transactions on the pod
that’s ready to crash

 – Doesn’t provide
analysis of data

 – Doesn’t provide actions

8 Automating application-driven container elasticity

An app-driven approach
Application SLOs should drive the infrastructure
Containerization of mission-critical applications is an
investment with numerous benefits. But to fully reap those
benefits of speed, elasticity and portability you need software to
make the right resourcing decisions at the right time, 24x7x365.
Otherwise, the complexity will slow you down.

IBM® Turbonomic® Application Resource Management
stitches your mission-critical applications to the Kubernetes
platform and the underlying infrastructure, essentially wherever
your applications run. Based on real-time application demand
and accounting for constraints and interdependencies at
every layer of the stack—from the logical to the physical—
software determines the right actions at the right time to help
ensure applications always get exactly what they need to
perform. Execute in real time, scheduled or as part of your
DevOps pipeline.

Intelligent sizing: How should you size containers?
 – Automate with deployment—execute and persist resize as
part of the pipeline, for example, YAML, Jenkins and so on.

 – Automate in real time—dynamically execute
through Kubernetes.

Continuous placement: When do you need to move pods?
To which nodes?

 – Dynamically execute in real time through Kubernetes.
Only for nondisruptive stateless services.

Dynamic scaling: When do you need to scale out or scale
back the cluster? By how much?

 – Dynamically execute cluster scaling in real time through
infrastructure as code or Kubernetes Cluster API.

SLO-driven scaling: When do you need to scale out or
scale back pods to meet application response-time SLOs?
By how much?

Prerequisites for SLO-driven scaling:
 – Applications are designed for horizontal
stateless microservices.

 – They have a definition and source of SLO data
that Kubernetes doesn’t provide.

What does this kind of intelligent automation mean for you,
your teams and your business? The following are the unique
benefits that IBM Turbonomic offers, whether you’re running
Kubernetes on prem, in the cloud, on bare metal servers or
any combination.

“Cruise control” for your apps: Your teams set response-time
SLOs; AI-powered software helps ensure that the platform
and underlying infrastructure always provide the resources
they need to meet those SLOs—wherever the apps run.

Minimize the manual labor: Developers, DevOps and site
reliability engineers (SREs) don’t need to set thresholds,
constraints or autoscaling policies. The software makes
the right resource decisions for you, providing actions
you can actually automate.

Don’t overspend on capacity: No need to rely on developers
to make resourcing decisions. They often overprovision just to
be safe, right? Our software determines exactly what resource
services are needed—all based on application demand.

Confidently accelerate DevOps: Safely increase the frequency
and scale of deployments. Our analytics integrates with your
DevOps workflows, helping ensure newly deployed and existing
services always perform.

Plan for growth with greater ease: Simulate the onboarding
of new services with our software. Determine exactly how many
more nodes you need to support new growth.

9 Automating application-driven container elasticity

Customer highlight

Accelerating digital
transformation during
a pandemic
IBM Turbonomic’s dynamic resourcing within the
Kubernetes platform and the underlying infrastructure
kept response-time low.

This customer is one the largest insurance companies
in South America with over 6 million customers. Its
industry-standard approach to managing the resourcing
of existing and next-generation environments was slowing
down digital transformation and the company’s response
to the pandemic.

IBM Turbonomic automation kept response time low
during the holiday spike in demand
This customer has a business app that integrates with
one of the largest low-cost airlines operating in the region.
Travel insurance is booked from this app so the peak we
see in Figure 3 is related to the multiday Easter holidays.
While demand on the app increased, IBM Turbonomic’s dynamic
resourcing within the Kubernetes platform and the underlying
infrastructure was able to keep response time low.

Figure 3. A full-stack view of the individual business
application and its response time with automation
response time kept low, even during peak demand

10 Automating application-driven container elasticity

About IBM Turbonomic,
an IBM Company
IBM® Turbonomic® Application Resource Management provides
application resource management (ARM) software used by
clients to help assure application performance and governance
by dynamically resourcing applications across hybrid and
multicloud environments. IBM Turbonomic network performance
management (NPM) provides modern monitoring and analytics
solutions to help assure continuous network performance at
scale across multivendor networks for enterprises, carriers and
managed services providers.

To learn more about IBM Turbonomic intelligent automation, visit
ibm.com/cloud/turbonomic or talk with an IBM representative.

57 mission-critical applications
 – Example, GPS in car: Report theft of
vehicle, quote for new policies and so on

 – ~3,000 pods (comprised of
~7,000 containers)

 – Stitched to Dynatrace

Automated
 – Container resizing (staging)
 – Continuous placement (all)

~70%
reduction in tickets

https://www.ibm.com/cloud/turbonomic
https://www.ibm.com/cloud/turbonomic?schedulerform

© Copyright IBM Corporation 2022

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
March 2022

IBM and the IBM logo are trademarks or registered trademarks of
International Business Machines Corporation, in the United States and/or
other countries. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on
ibm.com/trademark.

IBM Turbonomic is a registered trademark of Turbonomic Inc.,
an IBM Company.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

The client examples cited are presented for illustrative purposes only.
Actual performance results may vary depending on specific configurations
and operating conditions. It is the user’s responsibility to evaluate and verify
the operation of any other products or programs with IBM products and
programs. THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT
ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.
IBM products are warranted according to the terms and conditions of the
agreements under which they are provided.

1 State of DevOps 2021, Google Cloud, 2021

https://www.ibm.com/thought-leadership/trademark/
https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

